skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "George, Freya R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract New whole‐rock major and trace element geochemistry from the Leka Ophiolite Complex in Norway is presented and compared to the geochemical evolution and proposed tectonomagmatic processes recorded in the Izu‐Bonin‐Mariana system. These data demonstrate that the Leka Ophiolite Complex formed as forearc lithosphere during subduction initiation. A new high‐precision zircon U‐Pb date on forearc basalt constrains the timing of subduction initiation in the “Leka sector” of the Iapetus Ocean to 491.36 ± 0.17 Ma. The tectonomagmatic record of the Leka Ophiolite Complex captures only the earliest stages of subduction initiation and is thereby distinct from some other Appalachian–Caledonian ophiolites of similar age. The diversity of Appalachian–Caledonian ophiolite records may represent differing preservation and exposure of a variable forearc lithosphere. 
    more » « less
  3. In garnets from eclogites and blueschists formed within the subduction setting, fine-scale, oscillatory elemental zoning is a common feature, sometimes considered to record open-system fluid exchange during prograde metamorphism. We present oxygen isotope data for garnets with such zoning from five exhumed subduction zone complexes. Short length scale fluctuations in elemental and oxygen isotope zoning (which are themselves spatially decoupled) cannot be linked to open-system fluid exchange during garnet crystallization in all samples; these data do not provide evidence for a genetic relationship between elemental oscillations and fluid fluxing. However, garnets from one setting do provide clear evidence for syn-growth ingress of elementally and isotopically buffering fluids, a process that operated simultaneously with the formation of elemental oscillations. Our findings indicate multiple mechanisms of chemical transfer operate at the grain–rock scale during subduction, and that some subduction zone rocks may experience only limited interaction with external prograde fluids. These results are consistent with a picture of highly heterogenous volatile transfer during subduction, and suggest that some proportion of the fluid inventory inherited at shallow depths may be transferred to sub-arc depths. 
    more » « less
  4. The Dadeville Complex of Alabama and Georgia (southeastern United States) represents the largest suite of exposed mafic-ultramafic rocks in the southern Appalachians. Due to poor preservation, chemical alteration, and tectonic reworking, a specific tectonic origin for the Dadeville Complex has been difficult to deduce. We obtained new whole-rock and mineral geochemistry coupled with zircon U-Pb geochronology to investigate the magmatic and metamorphic processes recorded by the Dadeville Complex, as well as the timing of these processes. Our data reveal an up-stratigraphic evolution in the geochemistry of the volcanic rocks, from forearc basalts to boninites. Our new U-Pb zircon crystallization data—obtained from three amphibolite samples—place the timing of forearc/protoarc volcanism no later than ca. 467 Ma. New thermobarometry suggests that the Dadeville Complex rocks subsequently experienced deep, high-grade metamorphism, at pressure-temperature conditions of ~7 kbar and ~760 °C. The data presented here support a model for formation of the Dadeville Complex in the forearc region of a subduction zone during subduction initiation and protoarc development, followed by deep burial/underthrusting of the complex during orogenesis. 
    more » « less
  5. null (Ed.)
    Suprasubduction zone (SSZ) ophiolites of the northern Appalachians (eastern North America) have provided key constraints on the fundamental tectonic processes responsible for the evolution of the Appalachian orogen. The central and southern Appalachians, which extend from southern New York to Alabama (USA), also contain numerous ultra- mafic-mafic bodies that have been interpreted as ophiolite fragments; however, this interpretation is a matter of debate, with the origin(s) of such occurrences also attributed to layered intrusions. These disparate proposed origins, alongside the range of possible magmatic affinities, have varied potential implications for the magmatic and tectonic evolution of the central and southern Appalachian orogen and its relationship with the northern Appalachian orogen. We present the results of field observations, petrography, bulk-rock geochemistry, and spinel mineral chemistry for ultramafic portions of the Baltimore Mafic Complex, which refers to a series of ultramafic-mafic bodies that are discontinuously exposed in Maryland and southern Pennsylvania (USA). Our data indicate that the Baltimore Mafic Complex comprises SSZ ophiolite fragments. The Soldiers Delight Ultramafite displays geochemical characteristics—including highly depleted bulk-rock trace element patterns and high Cr# of spinel—characteristic of subduction-related mantle peridotites and serpentinites. The Hollofield Ultramafite likely represents the “layered ultramafics” that form the Moho. Interpretation of the Baltimore Mafic Complex as an Iapetus Ocean–derived SSZ ophiolite in the central Appalachian orogen raises the possibility that a broadly coeval suite of ophiolites is preserved along thousands of kilometers of orogenic strike. 
    more » « less